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A Discontinuous Galerkin Met hod for Parabolic Problems 

with Modified @Finite Approximation Technique 

H. Kaneko, G. J. W. Hou, and K. S. Bey 

Abstract 

A recent paper [l] is generalized to a case where the spatial region is taken in @. 
The region is assumed to be a thin body, such as a panel on the wing or fuselage of 

an aerospace vehicle. The traditional h- as well as hp-finite element methods are 

applied to the surface defined in the z - y variables, while, through the thickness, 

the technique of the p-element is employed. Time and spatial discretization scheme 

developed in [l], based upon an assumption of certain weak singularity of IIutl12, is 

used to derive an optimal a priori error estimate for the current method. 

Key words: Discontinuous Galerkin Method, Parabolic Equations, Modified hpFinite 

Element Met hod. 

1 Introduction 

In this paper, the discontinuous Galerkin method is applied to the following standard 

model problem of parabolic type: 

Find u such that 

where R is a closed and bounded set in R3 with boundary asZ, R+ = ( O , o o ) ,  Au = 

a2u/ax2 + a2/ay2 + a2u/az2, ut = &/at, and the functions f and uo are given data. 

'This author is supported by NASA- Grant NAG-1-01092 

+This author is supported by NASA- Grant NAG-1-2300 
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The discontinuous Galerkin method is a robust finite element method that can deliver 

high-order numerical approximation using unstructured grids. In this paper, region fl is 

assumed to be a thin body in R3, such as a panel on the wing or fuselage of an aerospace 

vehicle. The traditional h- as well as hp-finite element approximations are used in the 

z - y variables, whereas, the p-finite element method developed, e.g., in [5],[15], is used 

in the z variable which describes the region through the thickness. The application of the 

p-finite element method through the thickness of thin structure, as compared to applying 

the h- or hp-finite element discretization to all coordinate directions, enables us to 

avoid structuring elements in P that are too thin to satisfy the required quasi-uniformity 

condition (e.g. see [7]) that is necessary to deliver stable numerical approximation. We 

are coining the term ‘modified hp’-finite element method, as it differs from the traditional 

hp-finite element method which uses h- and p-finite elements on the same domain where 

the h-finite e!emer?t umretthcd prcvides a refineme& ef the  regic:: a ~ d  t he  p-Fiite e!eme;;t 

provides an enrichment. In Section 2, approximation power of the modified hp-finite 

element method will be investigated. In Section 3, the discontinuous Galerkin method 

with the modified hpfinite element approximation technique is established. Discontinuity 

is in time variable and time discretization is based upon the degree of singularity of 11.t1I2. 
The traditional h-finite element method is employed in time. The convergence analysis 

given in [9] will be used. The reader is also reminded of recently published important 

paper [16] by Schotzau and Schwab in which various time discretization techniques are 

discussed. For instance, an exponential convergence rate in time of p-finite element 

method is obtained in [16] despite the presence of singularity in the transient phase of 

the solution. Time discretization used there is geometric. Schotzau and Schwab’s result 

extends the results in [3] and [4] in which no exponential convergence rate is reported. 

Also they discuss the h-finite element technique in time using a class of radical mesh and 

obtain the algebraic convergence rate which is optimal. The radical mesh was chosen by 

analyzing the incompatibility between initial and boundary data. The present authors [l] 

established a similar time discretization technique for the discontinuous Galerkin finite 

element method, h-version in time, which was based upon the singularity of 1 1 ~ ~ 1 1 ~ .  Using 
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this analysis, it is shown in [l] that the optimal algebraic convergence rate in time of the 

discontinuous Galerkin method can be obtained under more dispersed, therefore more 

computationally stable radical mesh than the mesh used in [16]. 

2 Approximation Power of Modified hp Elements 

Let w E. R2 and I' C R be convex regions. For simplicity, it is assumed that r = [-$, $1 
where d = Irl. For simplicity, the thickness, d, is assumed constant over the domain. The 

Sobolev space of order k defined on w x I' is denoted by Hk(w x I') with the norm 

ll~112kwxr = c IID"~lG, 
o l l a l l k  

where for each multi-integer a = (a1, a2, a3), we have let la1 = a1 + a2 + a3 and 

We note that the Sobolev norm reduces to the usual LZ norm when k = 0. In this section, 

a best possible error estimate is derived for approximating an element in Hk(w x I?) by 

the finite element function spaces. Let Kt,q denote the master triangular element defined 

Kc,,,={(<,q)€ R2: O I q I ( l + < ) &  - 1 1 < 1 0 o r  
bY 

O I q I ( 1 - J ) f i  Oltll). 
Let SP(Kc,,) denote the space of polynomials of degree 1 p on Kc,,,, -i.e., 

SP(Kc,?)  = span(c$: i,j = 0,1,. . . , p ;  i + j 1 p } .  

First, the shape functions for the master element  KC,^ are formed. To accomplish this, 

the barycentric coordinates are introduced via 

Xi's form a partition of unity and X i  is identically equal to one at a vertex of Kc,,, and 

vanishes on the opposite side of  KC,^. The hierarchical shape functions on Kt,? consists 
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of internal as well as external functions. The normalized antiderivatives of the Legendre 

polynomials are defined by 

Now, the external shape functions consist of 3 nodal shape functions 

N i ( t ,  77) = Xi, i = 1,2 ,3 ,  (2.3) 

and 3(p - 1) side shape functions Ni lil (t, q) ,  i = 1, .  . . , p  - 1, j = 1,2,3.  The index j 

indicates one of three sides of KC,,. Noting that &(H) = 0, 

1 
&(q) = qz)(pi(q),  i = 1 , 2 , 3 , . .  . (2.4) 

where (pi(q) is a polynomial of degree i - 1. For instance, (p1(q) = -&, (pz (q )  = -6% 
and cp3(q) = e ( 1 -  5q2) ,  etc. The side shape functions are constructed as follows: 

Ni"'(c, 7) = X 2 X 3 ( p i ( x 3  - A,) 

Np1(c7q) = X 3 X I ( p i ( X 1  - A , ) ,  

~ F l ( t 7  V )  = ~ l ~ z c ~ i ( ~ 2  - ~ 1 ) -  

i = 1 , .  . . , p -  1, (2.5) 

From (2.4) and (2.5), there are 3+3(p-1) shape functions. As dirn(SP(K~,,)) = I P + l ) @ t 2 )  , 
the remaining basis elements are constructed in terms of internal shape func- 

tions. Clearly, nontrivial internal shape functions on KC,q exists only if p 2 3. For p = 3, 

the bubble function on KC,q below serves as the internal function; 

Moreover, the collection IP(Kc,,) of higher-order internal shape functions can be con- 

structed from 

Let Th, h > 0, be a triangulation of w. let x = Qk(L1, L2, L3) and y = Qk(L1, Lz, L3) be 

the element mappings of the standard triangle  KC,^ to the Zth triangular element K' E T', 

e.g., the linear mapping onto K' with vertices {(xf, Y : ) } ; = ~ ,  
3 
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The space of all polynomials of degree 5 p on K' is denoted by SP(Kz) and its basis can 

be formed from the shape functions of Sp(Kc,,) described above by transforming them 

under Qi and QL. The finite element space SP,'(w, Th) is now defined. For w ,  p 2 0 and 

k 1 O? 
S p ' k ( ~ , T h )  = {U E Hk(w) :  U I K  E S P ( K ) ,  K E Th}. (2-7) 

Assume that a triangulation {Th}, h > 0, of w consists of {KL}Ey' and that h' = 

diam(K;), for I = I , .  . . ,M(h) .  

In the z-variable for through the thickness approximation, the local variable r is defined 

in the reference element [-1,1] and I' is mapped onto the reference element by Qz, i.e., 

Clearly, QL is a linear function defined by 

i d i  d 
= & z ( ~ )  = -(I- T)(--) + -(I + T)S, 2 2 2  E [--I, 11 

The Jacobian of Qz is constant 
dz - d 
dr 2'  

In this paper, the basis functions of Pp([-l,1]) are taken to be the onedimensional 

hierarchical shape functions. See [15] for a complete discussion of the basis elements used 

in the p and hpfinite element methods. 

_ -  - 

For example, in approximating an element in H'[-l, 11, with 1 = 0, Qi(7) = e-.l(~), 
1 5 i 5 p + 1, where Pi-l is the Legendre polynomial of degree i - 1, form the hierarchical 

basis functions. With 1 = 1, the external ($1 and Q2) and internal ($J~, i 2 3) shape 

functions are defined by 

Note that $i's form an orthogonal family with respect to the energy inner product (., -)E, 

1 1 

-1 -1 
($4, $ j ) E  f J $i(t)$j(t)dt = 1 P,(t)P,(t)dt = 6ij. 



Also note that the internal shape functions satisfy 

For the case 1 = 2 and p 1 3, the four nodal shape functions and the remaining p - 3 

internal shape functions given by 

= i(l - T)2(1 + T), $247) = f(1- T)2(2 + T) 
@3(T)  = - f ( l  + T)2(1- T), $&) = f(l  + T)2(2 - T) (2.9) 

2i-5 112 T 
$ i ( T ) = ( T )  J - 1 ( ~ - q ) P i - 3 ( q ) d q ,  i = 5  ,..., p + l .  

In this case, the internal shape functions satisfy 

dj $i 
d r j  
-(H) = 0, for 5 5 i 5 p +  1 a n d j  = 0, l .  (2.10) 

The nodal basis functions, $i ,  i = 1,2,3,4, in (2.9) also satisfy three of the four conditions 

in (2.10). For example, using the shape functions in (2.8), any element u E L2[-i, ij can 

be approximated by up E Pp([-1, l]), in the form 

(2.11) 

For approximating the solutions of parabolic problems with the homogeneous Dirichlet 

boundary condition, the first two terms will be dropped, as u(-1) = u(1) = 0. A sequence 

of triangulations {Th}h>O is called the quasiuniform mesh if 

< y, for all h > 0, 
h 

diam(K) - 
(2.12) 

with h = maxKETh diarn(K), and for some y > 0. Pp(I') denotes the space of all polyno- 

mials of degree 5 p defined on I'. The following is proved by Babu5ka, Szabo and Katz in 

[5]. See also [SI by BabuSka and Suri on a related discussion. Here Ro denotes a bounded 

polygonal domain in R2. 

Theorem 2.1 Let u E Hk(s20). Then there exists a sequence zp E Pp(Ro), p = 1,2,. . . , 
such that, for any 0 5 1 5 I C ,  

where C is independent of u and p .  
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The parameters k and 1 are not necessarily integral. Their proof relies heavily on the 

approximation power of the trigonometric polynomials. 

With 1 = 0 in Theorem 2.1 and using the usual duality argument, the results in 

Theorem 2.1 are further improved by Babugka and S u i  in [6] (theorem 2.9), (see also a 

series of papers by Gui and BabGka [13]), to the hpfinite element setting as follows: 

Theorem 2.2 Let T h  be a quasiunzfonn partition of Szo. Then for k 2 1, u E Hk(Ro), 

where v = min(k,p+ 1). 

The corresponding error estimate in the 11 . ( I H k ( ( R o )  is also available in [SI. 

h-version in the z - y surface variabies: First, the h-finite eiement approximation 

is considered in the z - y variables. Let z = s(7) = $T be the linear transformation of 

[-1,1] onto I?. Now consider the problem of approximating a function u E Hk(w x r) by 

a function from the tensor product space Si(w) 8 PP(r) ,  where 

For error analysis of h-version of the finite element method, the space S p > k ( ~ ,  T h )  defined 

in (2.7) is not necessary, and the space S;l(w) of lower dimension can be used to attain 

the optimal convergence rate. Let Pi: H2(w)  -+ S ~ ( W )  denote the interpolation projection 

defined by 

r 
" I  (Piu)(z,  y) = u(zi, yi)cpi(z, y), for all (z, y) E K' and u E H k ( w ) ,  (2.14) 

i=l 

where Th is a triangulation of w with K' E T h  and { ( z f , y ~ ) } ~ = l  is a set of nodes on K' 

with cpf(zi, yi) = 6,. Also, denote by Qp: H k ( r )  -+ Pp(r)  a projection defined by 

P+l 

i=l 
(Qpu)(z)  = Ui'Pi(z), for all z E r, (2.15) 
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where ei(z) = Gi(s-l(z)) for each i 2 1 where qbi are defined, e.g., in (2.8) or (2.9). 

Recall that for IC = 1, the constants a1 and a2 are known in case of parabolic problems 

with Dirichlet condition, and it is assumed that ai, i 1 3, in (2.15) are determined by 

From approximation theory [ 171, 

111 - Ph'llLz(n) = O ( 0  (2.17) 

Also Qp: L z ( ~ )  + PP(r), from being the orthogonal projection in the sense described in 

(2.16) and from Theorem 2.1 that 

Let 

For u E L2(w x r), 

and 
Ufl 

where aj depends upon u and obtained according to (2.16). First, approximation order 

under L2 operator norm of 5 @ Qp for @ I is established. 

Lemma 2.3 For 5 : H k ( w )  -+ Si(w), 0 5 r 5 k, and QP:Hk(F) --t PP(r)  defined 

respectively in (2.14) and (2.15), 

where C is independent of p.  
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I Cp-&, by Theorem 2.1. 
0 

Similarly, the following lemma will be useful. 

Lemma 2.4 Let q: H k ( u )  -+ Si ,  with 0 5 r 5 k and Qp: Hk(( r )  + Pp(r) .  Then 

111 @ Qp - Pi 8 I Ch' 

where C is independent of r. 
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- < Ch', provided that aj f H'(w), 

where the last inequality follows from a well known result of the approximation power of 

piecewise polynomials [17]. 0 

Using Lemmas 2.1 and 2.2, we obtain the following theorem which provides an error 

estimate for approximating an element in H k ( u  x r) by elements from Sl(w)  @ Pp(I?). 

The result will be used in the next section when the formulation of error estimate of 

the modified h - p discontinuous Galerkin finite element method for approximating the 

solution of the parabolic problem (1.1) is established. 
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hpversion in the 2 - y surface variables: Now we incorporate the hpversion of 

approximation technique in the z - y coordinates. The goal is to approximate a function 

u E Hk(w x I?) from the tensor product space SP1tk(w, Th)@PP,(r) for nonnegative integers 

pl  and p z .  Analysis is similar to the one given in Lemmas 2.3 and 2.4 and therefore is not 

given. Using Theorem 2.2, it can be seen easily that 

Theorem 2.6 Let u E H k ( u  x r). Then there exists u* E Splik(w, Th) 8 Pm(I?), 

where Y = min(k,pl + 1) and h = maxKeTh diam(K), with Th a triangulation of w. 

Remark: Let N ( p )  v. Note that numbers of the degrees of freedom of 

P l ~ ~ ( w , T h )  and Pp2(I') are M(h)N(pl) and N(pz )  respectively. Since a single element 

through the thickness is used because of the specific structural consideration in this pa- 

per, we can not expect the total error to decrease by letting the diameter h --+ 0, -i.e., by 

letting the size of surface elements decrease to 0. The second error term would quickly 

dominates the overall performance of approximation in that case. In order for both of 

the error terms in Theorem 2.6 to decrease consistently, note that N ( p )  = O(J?) and 

h = O(M(h)-'). Thus the number of surface elements M(h) and the corresponding 

degree pl of polynomials should be selected so as to maintain 

M(h) -kN(p l ) -$  N N ( p z ) - $ .  (2.10) 

Equation (2.10) not only describes the consistent error estimates between the two terms 

but also indicates the consistent workloads between the surface and the through the 

thickness approximations. 
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3 Discontinuous Galerkin Method 

In this section, the discontinuous Galerkin (DG) method for problem (1.1) is developed. 

The discontinuity is introduced in time, which allows computation to march forward in 

time. This, when compared with the standard continuous Galerkin method, presents an 

enormous saving in size of computation. The DG finite element method for parabolic 

partial differential equations was studied in a series of papers by Erikson, Johnson and 

Larsson, [8, 9, 10, 11, 121. In these papers, the convergence in time of h-finite element 

DG method is established for solutions which are smooth. More specifically, when the 

solutions are approximated by polynomials of degree T ,  then the algebraic error estimate 

of O(AtT+') as At --+ 0 is obtained. However, in many parabolic partial equations, 

solutions exhibit singularities at t = 0 due to the initial conditions. In a recent paper 

[l], the present authors established a graded time discretization scheme that captures the 

transient solution to optimal precision. The graded time mesh is selected by assuming that 

llut112 is weakly singular. A similar study of the graded time meshes is reported recently by 

Schotzau and Schwab [16]. They derive a set of graded time partition points by considering 

an incompatibility between initial and boundary conditions. It is demonstrated in [l] that 

the time discretization based upon 1 1 ~ ~ 1 1 ~  provides more relaxed distribution of partition 

points. The paper of Schotzau and Schwab goes on to  describe the pfmite element in 

time and obtain an exponential convergence in spite of a singular transient phase of the 

solution. We will not discuss the pfinite element in time in this paper. It will be taken 

up in [2] in which the complete pfinite element for parabolic problems is discussed. 

We begin by recalling several results from [2] that are pertinent to the present paper. 

The following conditions will be assumed. Recall from Section 2 that R = w x r. Let 

(h,  T ,  S) denote a finite element discretization satisfying 

1. h is a positive function in @(a) such that 

I 7 h(z)l 5 M ,  for all z E !? and for some M > 0. 

2. T = { K }  is a set of triangular subdomain of w with each triangular element having 
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diameter hK such that 

Clhi  I J,.. for all K E T, 

and associated with the function h through 

clhK 5 h ( z )  5 c2hK, for all z E K , K  E T ,  

where c1 > 0, c2 > 0. 

3. S is the set of all continuous functions on fi which are polynomials of order r in 

z = (zl, z 2 )  on each K E T and vanish on aw as well as which are polynomials of 

order p in the z-variable in I'. 

For the discontinuous Galerkin method for (l.l), we partition R+ as 0 = to < tl < 
(t,,-l.t,] with k? = tx  - t,_:. For each time interval, ... < t ,  < ... where we let I,, 

with q a nonnegative integer, We let 

where 

1 the space of all functions u* E S;l(w) 8 PP(r)  

or u* E Splk(w,Th) 8 Pp(17) such that 

h = maxKET,, diam(K) where T h  is a triangulation of w 

vhp = 

P 

Pq(I,) = {v(t) = vita: vi E VhP}. 
i=O 

1 
and 

The discontinuous Galerkin method is defined as follows: 

Find U such that for n = 1,2 , .  . . , with R = w 8 r, U I o x ~ ,  E W;p and 

where [w& = ut: - XI;, 2 ~ ' : ( - )  = lim,,o+c-) w(t, + s), U< = uo, (u, c) = Jn u(z)c(z)dz 

and a(u, u) = (VU, Vu). The smoothness of I lut l l~z(n,  is subject to the initial condition 
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as well as to the boundary condition. For example, if we take in (l.l), uo(x) = T - z, 

f(z,  t )  E 0 and R = (0, T ) ,  then the actual solution of the corresponding problem is given 

M 
0 - j2t  u(z, t )  = uje sin(jx), 

j=l 

where 
uj” = a J ~ ( T  - x) sin(jz)dx 

= O(j). 

In the following, C’s denote generic constants whose values change as they appear. Now, 

The last equality in (3.2) is justified because of the uniform convergence of cgl Cj2e-’jzt 

with respect to t .  Now using the fact that J ~ e - z z ~  < 00, a simple change of variables 

(say, y = j&%) will show that the last expression in (3.2) is $Ct-1/2, which leads to 

A similar argument shows that if uj” = O(f) for some initial value function uo(z), then 

llut(t)ll2 = O(t-’l4). This case arises when ~ ( z )  = min(z, 7r - x) for z E (0, T). If uj” 

decays faster than j-2.5 as j -+ 00, then I lq( t ) l l2  will be bounded as t -+ 0. An initial 

phase for small t is the well known initial transient for parabolic problems. It is the case 

that the smoothness of the solutions of parabolic problems vary significantly in space 

and time with initial transients where highly oscillatory components of the solution are 

decaying rapidly. Therefore, in order for numerical methods for parabolic problems to 

be successful, it is imperative that the methods take a careful account of time and space 

discretization scheme so as to capture the transient solutions. An adaptive time step 

control scheme was established by Eriksson and Johnson in [9]. Time steps I C ,  are defined 
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by controlling the size of 
. ci) 

where q is the order of spline used in time and = ut, uj2) = uttr uj3) = Autt and 

llwllr, = maxtEr, IJw(t)llz. Note that the method of Eriksson and Johnson requires some 

estimates concerning Ilwllr, and up) = Aut, to achieve the second and the third order 

convergence in time. The approach given in [l] provides convergence of any order in time 

for the discontinuous Galerkin method by examining only the behavior of 11.t112. 

min 4 I b t  llr, 
j < q + l  

For 0 < cr < 1 and q a nonnegative integer, define Q E. For a positive integer N 

and T > 0, define 
n 

“ N  
t* = ( - )Q ,  n = 0,1,. . . , N 

and 

t, = tET. (3.3) 

We let I ,  = (4-1, t,], n = 1,2, .  . . , N .  Let k, denote the length of I ,  so that 

n n - 1  
kn = [(z)‘ - ( T ) ~ ] T ,  n = 1,2, .  . . N .  

Note that 

n 1 
N N  

k, 5 Q[-IQ-’-T by the mean value theorem, 

hence 

(3.4) 
1 

kn I c-, Nq+’ 

where C is a constant independent of n. The solution u(z, t )  of (1.1) is then approximated 

in t over each I ,  by a polynomial of degree q. For example, with q = 1, let I iw denote 

the linear interpolatory projection of w E H i  in time onto Whk,  viz, 

t ,  - t t - t,_’ 
IAw(s,t)  = - ~ ( 5 ,  tn-1) + - w(z,tn), for each t E I,. 

kn kn 

Note that I:, considered as an operator defined on H i  is bounded with respect to the 
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Since R is assumed to be of bounded domain, 1; is bounded with respect to 11 . 1 1 1 ,  also. 

As was the case with the Lz projection, I: equals the identity on polynomials of degree 

5 1. Expanding u(z, t )  in Taylor series with respect to t at t ,  to the first or to the second 

order, we obtain, respectively, for each n = 1,2,. . . , N ,  

(3.5) 

Lemma 3.1 Let 0 < CY < 1, q a nonnegative integer and T > 0,  we assume that tn, 

n = 1,. . . , N am defined by  (3.3). Then 

where C, is a constant independent on N 

Lemma 3.2 Let t, and I C ,  be defined by (3.3). Then 

(1 lnm t R f l l 2  5 ."G, f67 ea& = (),I,. . . , 1 v .  nT 
\ A  I '"5 

IC, 

Lemma 3.2 is used to guarantee the stability of the discontinuous Galerkin method. In 

the remainder of this paper, we illustrate the current 'modified ' hpfinite element method 

by assuming the h-version in the surface z - y variables using the linear splines. Also 

we illustrate the cases for constant as well as linear degree in time approximation. Let 

{(xi, yi)}gl is the set of nodal points which are the interior vertices of K in Th. Let 

'p j  be the linear spline basis element defined by cpj(si, y i )  = S,, for i, j = 1, . . . M .  The 

superscript 1 used in (2.2) will be dropped. For application of higher order spline basis, 

more nodal points are required over each K .  The solution u of (1.1) is approximated by 

(t > 0) 

Note that u(zj, yj, re, 0), for j = 1,. . . , A4 are known from the initial condition. Also, for 

t > 0, the boundary values u ( z j , y j , ~ $ , t )  are given. As u(3,t) = 0, for if E XI, t E R+ 

in ( l . l ) ,  (3.6) simplifies to 

(3.7) 
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At each time level t,, we approximate u(5, y, z,  tn) = u(3, t )  by 

M p+l . 

U" = ~ " ( 3 )  = U(z7 t n )  = C ai(tn)$i(z)pj(z, y), n = 0 ~ 1 , .  . . N .  (3.7) 
j=1 i=3 

To start the DG finite element method, we first require uj(t0) and they are determined 

from ~ ~ ( 3 ) .  More specifically, for each j = 1 , .  . . , M ,  since uo(q,  yj, z ,  t o )  - U 0 ( q 7  yj, z, t o )  = 
P+l ai j (to)$i(z), M ( p  - 1) many aj(to) are found by solving 

Now, equation (3.1) can be formulated as follows: 

For n = 1,2 , .  . . , N ,  given Un-'t-, find U UII, E Pq(In) such that 

l " [ ( U t 7  ZJ) + a(U, v)]dt + (un-l,+, vn-l,+) = J Ill ( j ,  w)dt + (U"+, v"-l,+) (3.8) 

for all ZJ E P'(L,) where Uoi- = uo. 

For a special case, consider q = 0, -i.e., constant in time. As U" = Uny- = Un-',+ in this 

case, (3.8) reduces to 

(U" - un- l ,  v) + k,a(Un, ZJ) = J ( j ,  ZJ)dt, (3.9) 
In  

for all 21 E PO(1,) and n = 1 , 2 , .  . . N .  With (3.7), (3.9) becomes for each n = 1,2,. . . 

For q = 1, we let U ~ I ,  = an(%)+ Y q n ( Z )  where a,, = p+l ai @,j (t,)$i(z) 'pj(z, y) 

@, and Un-ly+ = @,-.I + @,-I7 and 9, = E:, CiZ3 ai ' (tn)$i(z) cpj(z, y). As Un-',+ = 

(3.8) becomes 

M 

p+l @ j  
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for all .u E PI(I,,). By taking .u = $,PO and Y ? , b n c p p ,  (3.10) reduces to the following 

linear equations for 2M(p - 1) unknowns a:”(t,) and a”j(tn): 

The foiiowing theorem can be proved by minor modifications to the proof of theorem 

1.1, [9] and by making use of Theorem 2.5. The present theorem is described for S2 = 

w @ r  E R3. 

Theorem 3.3 Suppose that there is a constant y such that the time steps kn satisfy 

kn 5 yk,,+l, n = 1, .  . . , N -  1 and let U,, denote the solution of (3.8) approximating u at t,. 

Here u is approximated by  a polynomial of degree q 2 0 over each In for n = 1 , .  . . , N - 1, 

and u(-, ., -, t )  is approximated by  an element from SL(w) 18 PP(r)  for each t E R+, where 

w is a polygonal domain in R2. Then there is a constant C depending only on y and a 

constant p, where p~ 2 P h K  and p~ is the diameter of the circle inscribed in K for all 

K E Th, such that for n = 1 , 2 , .  . . , N ,  

II~(tn)-unII2 I C(l+log -) tn  1/2 {mm I I u - I ~ u I I I , , ,  +h211~~,uIII,, +P-~IIuIII,, ,H~(~)), (3.11) 

where IIZUllI,,,Hk(r) = maxtEI,, Ilw(t)llHk(p) and D& denotes the second order derivative with 

respect to x and y variables. 

k,, m<n 

Lemma 3.2 guarantees that the current DG finite element method with the graded tem- 

poral meshes defined in (3.3) is a stable scheme. Also Lemma 3.1 provides a bound for 
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the term mu,<,,, IIu - I:ull~,,, in (3.11) provided that Ilutllz = O(t-") as t -+ 0. Theorem 

2.5 is used to control the last two error terms in Theorem 3.3. In summary, we obtain the 

following theorem which utilizes the traditional h-hi te  element in the surface variables. 

Theorem 3.4 Suppose that u f Hk(w x I?) and llut112 = O ( P )  for 0 < a < 1 and that 

the time partition points t ,  are taken according to (3.3). Let U, denote the solution of 

(3.8) approximating u at t,. Also assume that u is approximated in time variable by  a 

polynomial of degree q 2 0 over each I ,  for n = 1, . . . , N-1, and u(-, 0 ,  ., t )  is approximated 

by an element from S;(w) @ PP(r) for each t E R+, where w is a polygonal domain in R2. 

Then 

IIu(t,) - U,ll2 = O(N-(q+') + hZ + P - ~ ) .  

if ;&&er ~. > 2 SPliliW .&-e -u& iii tlleIi tiie secuiid teriii in tiie ei;loi c~~ be 

replaced by h' provided IIDLYull~, is bounded. 

In the case of the h p h i t e  element approximation for the surface variables, Theorem 

2.6 is now used to establish the following. 

Theorem 3.5 Suppose that u E Hk(w x I?) and llq112 = O ( P )  for 0 < a < 1 and that 

the time partition points t ,  are taken according to (3.3). Let U, denote the solution of 

(3.8) approximating u at t,. Also assume that u is approximated in time variable by  a 

polynomial of degree q 2 0 over each I ,  for n = 1 , .  . . , N-1, and u(-, ., 0 ,  t )  is approximated 

by  an element from Spl~~(w,Th) 8 PpL(I?) for each t E R+, where w is a polygonal domain 

in Rz. Then 

l I ~ ( t , )  - Unl12 = O(N-('+') + h"pYk +pyk ) ,  

where v = min(lc,pl + 1). 

Numerical experiments of the presently proposed 'modified" h - p finite element 

method for parabolic equations will be reported elsewhere in future. 
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